Abstract

Fuchsian groups with a modular embedding have the richest arithmetic properties among non-arithmetic Fuchsian groups. But they are very rare, all known examples being related either to triangle groups or to Teichmüller curves. In Part I of this paper we study the arithmetic properties of the modular embedding and develop from scratch a theory of twisted modular forms for Fuchsian groups with a modular embedding, proving dimension formulas, coefficient growth estimates and differential equations. In Part II we provide a modular proof for an Apéry-like integrality statement for solutions of Picard–Fuchs equations. We illustrate the theory on a worked example, giving explicit Fourier expansions of twisted modular forms and the equation of a Teichmüller curve in a Hilbert modular surface. In Part III we show that genus two Teichmüller curves are cut out in Hilbert modular surfaces by a product of theta derivatives. We rederive most of the known properties of those Teichmüller curves from this viewpoint, without using the theory of flat surfaces. As a consequence we give the modular embeddings for all genus two Teichmüller curves and prove that the Fourier developments of their twisted modular forms are algebraic up to one transcendental scaling constant. Moreover, we prove that Bainbridge’s compactification of Hilbert modular surfaces is toroidal. The strategy to compactify can be expressed using continued fractions and resembles Hirzebruch’s in form, but every detail is different.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.