Abstract
On a projective surface it is well-known that the set of curves orthogonal to a nef line bundle is either finite or uncountable. We show that this dichotomy fails in higher dimension by constructing a nef line bundle on a threefold which is trivial on countably infinitely many curves. This answers a question of Totaro. As a pleasant corollary, we exhibit a quasi-projective variety with only a countably infinite set of complete, positive-dimensional subvarieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.