Abstract
Teissier has proven remarkable inequalities [Formula: see text] for intersection numbers si = (ℒi ⋅ ℳd-i) of a pair of nef line bundles ℒ, ℳ on a d-dimensional complete algebraic variety over a field. He asks if two nef and big line bundles are numerically proportional if the inequalities are all equalities. In this paper, we show that this is true in the most general possible situation, for nef and big line bundles on a proper irreducible scheme over an arbitrary field k. Boucksom, Favre and Jonsson have recently established this result on a complete variety X over an algebraically closed field of characteristic zero. Their proof involves an ingenious extension of the intersection theory on a variety to its Zariski Riemann Manifold. This extension requires the existence of a direct system of nonsingular varieties dominating X. We make use of a simpler intersection theory which does not require resolution of singularities, and extend volume to an arbitrary field and prove its continuous differentiability, extending results of Boucksom, Favre and Jonsson, and of Lazarsfeld and Mustaţă. A goal in this paper is to provide a manuscript which will be accessible to many readers. As such, subtle topological arguments which are required to give a complete proof in [S. Bouksom et al., J. Algebraic Geometry18 (2009) 279–308] have been written out in this manuscript, in the context of our intersection theory, and over arbitrary varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.