Abstract

This paper deals with the prediction of curve-valued autoregression processes. It develops a novel technique, predictive factor decomposition, for the estimation of the autoregression operator. The technique is based on finding a reduced-rank approximation to the autoregression operator that minimizes the expected squared norm of the prediction error. Implementing this idea, we relate the operator approximation problem to the singular value decomposition of a combination of cross-covariance and covariance operators. We develop an estimation method based on regularization of the empirical counterpart of this singular value decomposition, prove its consistency and evaluate convergence rates. The method is illustrated by an example of the term structure of the Eurodollar futures rates. In the sample corresponding to the period of normal growth, the predictive factor technique outperforms the principal components method and performs on a par with custom-designed prediction methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.