Abstract

Solid-state lighting (SSL) devices are ubiquitous in several markets, including architectural, automotive, healthcare, heritage conservation, and entertainment lighting. Fine control of the LED light output is crucial for applications where spectral precision is required, but dimming LEDs can cause a nonlinear response in its output, shifting the chromaticity. The nonlinear response of a multi-color LEDs can be corrected by curve-fitting the measured data to input dimming controls. In this study, the spectral output of an RGB LED projector was corrected using polynomial curve fitting. The accuracy of four different measurement methods was compared in order to find the optimal correction approach in terms of the time and effort needed to perform measurements. The results suggest that the curve fitting of very high-resolution dimming steps (n = 125) significantly decreased the chromaticity shifts between measured (actual) and corrected spectra. The effect size between approaches indicates that the curve-fitting of the high-resolution approach (n = 23) performs equally well as at very high resolution (n = 125). The curve-fitting correction can be used as an alternative approach or in addition to existing methods, such as the closed-loop correction. The curve fitting method can be applied to any tunable multi-color LED lighting system to correct the nonlinear dimming response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.