Abstract

Subdivision schemes are used to generate smooth curves by iteratively refining an initial control polygon. The simplest such schemes are corner cutting schemes, which specify two distinct points on each edge of the current polygon and connect them to get the refined polygon, thus cutting off the corners of the current polygon. While de Boor (1987) shows that this process always converges to a Lipschitz continuous limit curve, no matter how the points on each edge are chosen, Gregory and Qu (1996) discover that the limit curve is continuously differentiable under certain constraints. We extend these results and show that the limit curve can even be curvature continuous for specific sequences of cut ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.