Abstract
AbstractThe sensitivity of the calculated micropore size of zeolite Y in a fluidized cracking catalyst based on empirical models for argon adsorption has been tested by examining the effect of curvature and by systematically verifying the magnitude of physical constants in the model equations. With a consistent set of physical parameters the slit model provided a pore size value of 0.45 nm, while the new cylindrical models provided values of 0.69 and 0.74 nm. The latter values are found to correspond well with the known aperture size of zeolite Y, 0.74 nm. By separately varying the magnitudes of five of the physical constants in the model over a range of ±30%, it was concluded that the diameter of the oxide ion at the surface had a large effect on the calculated pore size, while the other parameters had only moderate to small effects. Preliminary application of the cylindrical pore model to isotherms of argon on other zeolites and molecular sieves leads to promising results, especially for medium to large pore zeolites. These results suggest that the cylindrical pore model is a useful means for the transformation of argon adsorption data on a zeolite into a micropore size distribution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have