Abstract

In low-voltage, deep sub- mum analog CMOS circuits, the accuracy and precision can be limited by the finite gain as well as by the input offset and 1/ <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> noise voltages of opamps. Here, we show how to design high-accuracy high-precision CMOS amplifiers by properly applying dynamic element matching to a second-generation current conveyor (CCII); if all of the critical, nominally identical transistor pairs are dynamically matched, the resulting amplifier has low residual input offset and noise voltages. When compared with chopper or traditional dynamic element-matching amplifiers, the proposed approach alleviates the tradeoff between output swing and output resistance and is more robust against the finite opamp gain. Transistor-level simulations confirm theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call