Abstract
Mixed halide hybrid perovskites are of significant interest because their bandgap can be tuned as a current-matched top-cell in tandem photovoltaics. However, several mixed halide perovskites phase segregate under illumination, exhibit large voltage deficits, and produce unstable photocurrents. We investigate the origin of phase segregation and implication for tandems with mixed halide large-bandgap (∼1.75 eV) perovskites. We show explicitly that MAPb(I0.6Br0.4)3 and (MA0.9,Cs0.1)Pb(I0.6,Br0.4)3, termed “MA” and “MACs”, respectively, rapidly phase segregate in the dark upon 1 sun equivalent current injection. This is direct experimental evidence that conduction band electrons or valence band holes are the culprit behind phase segregation. In contrast, (FA0.83,Cs0.17)Pb(I0.66,Br0.34)3, or “FACs,” prepared at only 75 °C resists phase segregation below 4 sun injection. FACs prepared at 165 °C yields larger grains and withstands higher injected carrier concentrations before phase segregation. The FACs and MAC...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have