Abstract

We report first-principles calculations of current-induced forces in molecular wires for which experiments are available. We investigate, as an example, the effect of current-induced forces on a benzene molecule connected to two bulk electrodes via sulfur end groups. We find that the molecule twists around an axis perpendicular to its plane and undergoes a "breathing" oscillation at resonant tunneling via antibonding states. However, current-induced forces do not substantially affect the absolute value of the current for biases as high as 5 V, suggesting that molecular wires can operate at very large electric fields without current-induced breakdown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.