Abstract
Current-driven skyrmion motion in random granular films is investigated with interesting findings. For a given current, there exists a critical disorder strength below which its transverse motion could either be boosted below a critical damping or be hindered above the critical damping, resulting in current and disorder dependences of skyrmion Hall angle. The boosting comes mainly from the random force that is opposite to the driving force (current). The critical damping depends on the current density and disorder strength. However, the longitudinal motion of a skyrmion is always hindered by the disorder. Above the critical disorder strength, skyrmions are pinned. The disorder-induced random force on a skyrmion can be classified as static and kinetic ones, similar to the friction force in the Newtonian mechanics. In the pinning phase, the static (pinning) random force is transverse to the current density. The kinetic random force is opposite to the skyrmion velocity when skyrmions are in motion. Furthermore, we provide strong evidences that the Thiele equation can perfectly describe skyrmion dynamics in granular films. These findings provide insight to skyrmion motion and should be important for skyrmiontronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.