Abstract

The discharge current–voltage–time waveforms are studied in the reactive Ar/O2 high power impulse magnetron sputtering discharge with a titanium target for 400 μs long pulses. The discharge current waveform is highly dependent on both the pulse repetition frequency and discharge voltage and the current increases with decreasing frequency or voltage. The authors attribute this to an increase in the secondary electron emission yield during the self-sputtering phase of the pulse, as an oxide forms on the target.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.