Abstract

The electrical properties of a set of seven-helix transmembrane proteins, whose space arrangement [three-dimensional (3D) structure] is known, are investigated by using regular arrays of the amino acids. These structures, specifically cubes, have topological features similar to those shown by the chosen proteins. The theoretical results show a good agreement between the predicted current-voltage characteristics obtained from a cubic array and those obtained from a detailed 3D structure. The agreement is confirmed by available experiments on bacteriorhodopsin. Furthermore, all the analyzed proteins are found to share the same critical behavior of the voltage-dependent conductance and of its variance. In particular, the cubic arrangement evidences a short plateau of the excess conductance and its variance at high voltages. The results of the present investigation show the possibility to predict the I-V characteristics of a multiple-protein sample even in the absence of detailed knowledge of the proteins' 3D structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.