Abstract

Schottky barrier diode theory conventionally assumes that the barrier height remains constant with the applied bias. However, high ideality factors and certain anomalous capacitance-voltage characteristics can only be explained by letting the barrier height vary with the applied voltage. Changes in the occupation of surface states have been inferred to be the cause of this change in barrier height, although the precise nature of these surface states has not yet been determined. This article examines the role of monoenergetic interfacial defect states whose occupancy is dynamically controlled by the local carrier densities, rather than by equilibrium conditions. Certain types of surface donor and acceptor states are shown to have a strong influence on the resulting current-voltage characteristics. The Al/GaAs(100) system is discussed in detail and experimental results are compared to this analytic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.