Abstract

The transdermal therapeutic system plays an important role in the treatment of neuropathic pain. Transdermal drug delivery is considered an ideal therapeutic approach for the management of chronic neurological disorders in the elderly population. It is a simple to use, non-invasive and painless drug delivery system, which provides sustained therapeutic plasma levels of drug for an extended period. Moreover, it bypasses the first-pass metabolism of the active agent, improves bioavailability and reduces undesired adverse effects, which in turn improves patient compliance. Several transdermal delivery systems are currently under investigation for the treatment of Parkinson's syndrome, Alzheimer's disorders, and Neurological pain. Drug delivery via the transdermal route is proposed as an alternative remedy to overcome the drawbacks associated with the conventional dosage forms for chronic neurological disorders. The management of Alzheimer's disease via transdermal drug administration exhibits the greatest therapeutic improvements in the treatment of cognition and global functioning among neuropathic patients. Technological breakthroughs in transdermal drug administration such as the microreservior system, microneedles, metered-dose transdermal spray (MDTS), needle-free injections, and ultrasound-based transdermal therapeutic systems have been successfully used to treat neurological disorders. For example, microneedle (MN) is a highly efficient and versatile device due to its distinctive properties. Ultrasounds have been very popular for the delivery of bioactive agents across the skin barrier. This review focuses on the recent advances of various technologies employed in the transdermal therapeutic systems and their applications on neurological disorders for achieving therapeutic outcomes on patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.