Abstract

The microbiological transformation of sterols is currently the technological basis for the industrial production of valuable steroid precursors, the so-called synthons, from which a wide range of steroid and indane isoprenoids are obtained by combined chemical and enzymatic routes. These compounds include value-added corticoids, neurosteroids, sex hormones, bile acids, and other terpenoid lipids required by the medicine, pharmaceutical, food, veterinary, and agricultural industries.Progress in understanding the molecular mechanisms of microbial degradation of steroids, and the development and implementation of genetic technologies, opened a new era in steroid biotechnology. Metabolic engineering of microbial producers makes it possible not only to improve the biocatalytic properties of industrial strains by enhancing their target activity and/or suppressing undesirable activities in order to avoid the formation of by-products or degradation of the steroid core, but also to redirect metabolic fluxes in cells towards accumulation of new metabolites that may be useful for practical applications. Along with whole-cell catalysis, the interest of researchers is growing in enzymatic methods that make it possible to carry out selective structural modifications of steroids, such as the introduction of double bonds, the oxidation of steroidal alcohols, or the reduction of steroid carbonyl groups. A promising area of research is strain engineering based on the heterologous expression of foreign steroidogenesis systems (bacterial, fungal, or mammalian) that ensure selective formation of demanded hydroxylated steroids.Here, current trends and progress in microbial steroid biotechnology over the past few years are briefly reviewed, with a particular focus on the application of metabolic engineering and synthetic biology techniques to improve existing and create new whole-cell microbial biocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.