Abstract

Deep-sea drilling at high latitudes of the Southern Hemispheres has provided almost the only available data to evaluate the biogeographic development of the planktonic biota in the Southern Ocean during the Cenozoic (65 m.y. to Present Day). Paleontological investigations on Deep Sea Drilling Project (DSDP) materials have shown that the development of Cenozoic planktonic biogeography of the Southern Ocean is intimately linked with the evolution of the Southern Ocean water masses themselves. During the Cenozoic, this has included the development of the Circum-Antarctic Current system as obstructing land masses moved apart, the refrigeration and later extensive glaciation of the continent, and the development of the Antarctic Convergence (Polar Front) with related oceanic upwelling.Almost all evolution of calcareous planktonic microfossils has occurred outside of the Antarctic—Subantarctic region followed by limited migration into these water masses. Virtually no endemism occurs amongst calcareous microfossil groups at these latitudes. In contrast, conspicuous and widespread evolution has occurred within the siliceous microfossil groups especially during the Neogene. Low diversity and differences in stratigraphic ranges of Antarctic calcareous microfossils makes them only broadly useful for correlation. Relatively higher diversities within the Subantarctic provide a firmer basis for more detailed correlation, although the ranges of fossils are often different than at lower latitudes because of different paleoceanographic and paleoclimatic controls. Within the Antarctic water mass south of the Antarctic Convergence, siliceous microfossilsbiostratigraphy, oxygen isotopic stratigraphy and magnetostratigraphy, provide the only firm basis for correlation with low-latitude sequences.Eocene (55-38 Ma) sediments contain abundant calcareous microfossils even closely adjacent to the continent. Antarctic calcareous planktonic microfossils of this age exhibit relative high diversity, although this is lower than assemblages of equivalent age at middle and low latitudes. Within the Subantarctic region, Eocene planktonic foraminifera exhibit strong affinities with those in the temperate regions. Biogeographic differences exist between various sectors of the Southern Ocean related to biogeographic isolation preceding the development of the Circum-Antarctic Current. Subantarctic calcareous nannofossil assemblages of Paleocene and Eocene age exhibit higher diversity than Oligocene and Neogene assemblages. Siliceous microfossils are poorly represented or at best poorly known.One of the most dramatic changes in Southern Ocean planktonic biogeography occurred near the Eocene/Oligocene boundary (38 Ma). Since then, Antarctic planktonic foraminiferal assemblages have exhibited distinct polar characteristics, marked in particular by low diversity, and this event thus reflects the initiation of the Antarctic faunal and floral provinces. Profound paleoceanographic changes at this time, which triggered the biogeographic crisis, appear to be related to the initiation of widespread Antarctic sea-ice formation, and rapid cooling of deep and intermediate waters, in turn associated with increased Antarctic glaciation. During the Oligocene, planktonic microfossil diversity was low in all groups throughout the world's oceans. In Antarctic waters, the early Oligocene foraminiferal fauna is monospecific (Subbotina angiporoides), while in the later Oligocene two species (S. angiporoides and Catapsydrax dissimilis) were recorded. Calcareous nannofossil assemblages are of low diversity compared with the Eocene. Subantarctic foraminiferal faunas of Oligocene age display much higher diversity than those in the Antarctic, but early and middle Oligoceae faunas still exhibit the lowest diversities for the entire Cenozoic. Siliceous assemblages remain relatively inconspicuous in most regions of the Southern Ocean.The Paleogene-Neogene transition (22 Ma) is marked by a major change in the global planktonic biogeography, i.e. modern patterns developed in which permanent, steep faunal and floral diversity gradients existed between tropical and polar regions; a gradient which has persisted even during the most severe glacial episodes. Oligocene assemblages of low diversity and almost cosmopolitan distribution were replaced by distinctive belts of planktonic assemblages arranged latitudinally from the tropics to the poles. The establishment of the steep planktonic diversity gradients and latitudinal provinces near the beginning of the Neogene almost certainly were linked to the development of the Circum-Antarctic Current in the late Oligocene which effectively separated high- and low-latitude planktonic assemblages. These fundamental global circulation and biogeographic patterns have persisted through the Neogene.During the Neogene (22 Ma to Present Day), Antarctic calcareous microfossil assemblages exhibit persistent low diversity and high dominance, while Subantarctic assemblages are of much greater diversity. The beginning of the Neogene (= beginning of Miocene) heralded the development of the high-latitude siliceous microfossil assemblages towards their present-day dominant role. Siliceous biogenec productivity began to increase. These changes were linked to the initial development and later intensification of circulation associated with the Antarctic Convergence and Antarctic Divergence. The Antarctic Convergence sharply separates dominantly siliceous assemblages to the south from calcareous assemblages to the north. Radiolarian assemblages became more endemic. Relatively warm early and middle Miocene conditions are reflected by slightly higher diversity of planktonic foraminifera and by the presence, in the northern Subantarctic, of conspicuous discoasters in early Miocene sediments. In Antarctic waters, calcareous nannofossils become unimportant as biogenic elements after the middle Miocene.The latest Miocene (∼ 5 m.y. ago) was marked by northward movement of the Antarctic Convergence, corresponding expansion of the Antarctic water mass, and low diversity of calcareous assemblages. Pliocene planktonic foraminifera seem to be largely monospecific in Antarctic and southern Subantarctic sequences. During the Quaternary, Antarctic waters reached a maximum northward expansion and exhibit highest siliceous biogenic productivity for the Cenozoic. In the Subantarctic, Quaternary foraminiferal diversities are much higher than in Pliocene sequences. Although calcareous nannofossil diversity may be high, only a few species are abundant. Large northward shifts of Antarctic and Subantarctic water masses have occurred during the Quaternary although no southward penetrations have occurred much beyond that of the present day. Several radiolarian and foraminiferal species disappeared or appeared at or close to a number of paleomagnetic reversals during the last 4 m.y. These faunal events, which provide valuable datums, do not seem to be associated with major climatic changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call