Abstract

Compared with traditional crystalline materials, amorphous alloys have excellent corrosion and wear resistance and high elastic modulus, due to their unique short-range ordered and long-range disordered atomic arrangement as well as absence of defects, such as grain boundaries and dislocations. Owing to the limitation of the bulk size of amorphous alloys as structural materials, the application as functional coatings can widely extend their use in various engineering fields. This review first briefly introduces the problems involved during high temperature preparation processes of amorphous coatings, including laser cladding and thermal spraying. Cold spray (CS) is characterized by a low-temperature solid-state deposition, and thus the oxidation and crystallization related with a high temperature environment can be avoided during the formation of coatings. Therefore, CS has unique advantages in the preparation of fully amorphous alloy coatings. The research status of Fe-, Al-, Ni-, and Zr-based amorphous alloy coatings and amorphous composite coatings are reviewed. The influence of CS process parameters, and powders and substrate conditions on the microstructure, hardness, as well as wear and corrosion resistance of amorphous coatings is analyzed. Meanwhile, the deposition mechanism of amorphous alloy coatings is discussed by simulation and experiment. Finally, the key issues involved in the preparation of amorphous alloy coatings via CS technology are summarized, and the future development is also being prospected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.