Abstract

We give a brief review of the past development of model studies on one-dimensional heat conduction. Particularly, we describe recent achievements on the study of heat conduction in one-dimensional gas models including the hard-point gas model and billiard gas channel. For a one-dimensional gas of elastically colliding particles of unequal masses, heat conduction is anomalous due to momentum conservation, and the divergence exponent of heat conductivity is estimated as α≈0.33 in k ∼ L α . Moreover, in billiard gas models, it is found that exponent instability is not necessary for normal heat conduction. The connection between heat conductivity and diffusion is investigated. Some new progress is reported. A recently proposed model with a quantized degree of freedom to study the heat transport in quasi-one dimensional systems is illustrated in which three distinct temperature regimes of heat conductivity are manifested. The establishment of local thermal equilibrium (LTE) in homogeneous and heterogeneous systems is also discussed. Finally, we give a summary with an outlook for further study about the problem of heat conduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call