Abstract

Aerobic granular sludge (AGS) is promising for water resource recovery. Despite the mature granulation strategies in sequencing batch reactor (SBR), the application of AGS-SBR in wastewater treatment is usually costly as it requires extensive infrastructure conversion (e.g., from continuous-flow reactor to SBR). In contrast, continuous-flow AGS (CAGS) that does not require such infrastructure conversion is a more cost-effective strategy to retrofit existing wastewater treatment plants (WWTPs). Formation of aerobic granules in both batch and continuous-flow mode depends on many factors, including selection pressure, feast/famine conditions, extracellular polymeric substances (EPS), and environmental conditions. Compared with AGS in SBR, creating proper conditions to facilitate granulation in continuous-flow mode is challenging. Researchers have been seeking to tackle this bottleneck by studying the impacts of selection pressure, feast/famine conditions, and operating parameters on granulation and granule stability in CAGS. This review paper summarizes the state-of-the-art knowledge regarding CAGS for wastewater treatment. Firstly, we discuss the CAGS granulation process and effective parameters (i.e., selection pressure, feast/famine conditions, hydrodynamic shear force, reactor configuration, the role of EPS, and other operating factors). Then, we evaluate CAGS performance in removing COD, nitrogen, phosphorus, emerging pollutants, and heavy metals from wastewater. Finally, the applicability of the hybrid CAGS systems is presented. At last, we suggest that integrating CAGS with other treatment methods such as membrane bioreactor (MBR) or advanced oxidation processes (AOP) can benefit the performance and stability of granules. However, future research should address unknowns including the relationship between feast/famine ratio and stability of the granules, the effectiveness of applying particle size-based selection pressure, and the CAGS performance at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call