Abstract

We have investigated the drain current-drain voltage characteristics and the spectral noise intensity of the drain current of (111) n-channel MOSFET's at T = 4.2 K. At T = 4.2 K the drain current-drain voltage characteristics showed a hysteresis which was not observed at T =77 K and at room temperature. A qualitative explanation of this hysteresis is given in terms of electron transfer from high mobility valleys to low mobility valleys due to hot electrons. In the spectra of the current noise three contributions could be distinguished: 1/ƒ-noise, white noise and generation-recombination noise. The 1/ƒ-noise is interpreted as number fluctuations noise. The effective trap density was found to be 2.3 × 10 22 m -3. At low drain voltages the white noise can be interpreted as diffusion noise. At higher drain voltages extra noise is observed over and above diffusion noise. This extra noise may be inter-valley noise. The generation-recombination noise was very sensitive to the gate voltage. A tentative explanation can be given if it is assumed that the traps which cause this noise have a non-uniform energy distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.