Abstract

BackgroundGlioblastoma multiforme (GBM) is one of the most fatal tumors of the central nervous system with high rate of disease progression, diagnosis, prognosis and low survival rate. Therapeutic approaches that relied on surgical resection and chemotherapy have been unable to curb the disease progression and subsequently leading to increase in incidences of GBM reoccurrence. Scope of the reviewIn the recent times, membrane-bound extracellular vesicles (EVs) have been observed as one of the key reasons for the uncontrolled growth of GBM. EVs are shown to have the potential to contribute to the disease progression via mediating drug resistance and epithelial-mesenchymal transition. The GBM-derived EVs (GDEVs) with its cargo contents act as the biological trojan horse and lead to disease progression after being received by the recipient target cells. This review article highlights the biophysical, biochemical properties of EVs, its cargo contents and its potential role in the growth and progression of GBM by altering tumour microenvironment. Major conclusionsEVs are being explored for serving as novel disease biomarkers in a variety of cancer types such as adenocarcinoma, pancreatic cancer, color rectal cancer, gliomas and glioblastomas. Improvement in the EV isolation protocols, polymer-based separation techniques and transcriptomics, have made EVs a key diagnostic marker to unravel the progression and early GBM diagnosis. GDEVs role in tumour progression is under extensive investigations. General significanceAttempts have been also made to discuss and compare the usage of EVs as potential therapeutic targets versus existing therapies targeting drug resistance and EMT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call