Abstract

Glioblastoma (GBM) is the most common central nervous system tumor. Temozolomide (TMZ) is a commonly used drug for GBM management. This study explored the mechanism of extracellular vesicles (EVs) regulating TMZ-resistance in GBM. LN229 cells were inducted into TMZ-resistant LN229r strain by stepwise induction. After the intervention of miR-27a-3p expression, cell viability of GBM cells treated with different concentrations of TMZ was detected by MTT and IC50 value was calculated. Cell proliferation and apoptosis were detected by colony formation and flow cytometry. EVs extracted from LN18 cells were identified and the internalization of EVs by LN229r cells was evaluated. The 100μmol/L TMZ-treated LN229r cells were treated with EVs or EVs with downregulated miR-27a-3p to verify the effect of EVs-carried miR-27a-3p on TMZ resistance. The binding relation between BTG2 and miR-27a-3p was verified. miR-27a-3p and BTG2 expressions in GBM cells and EVs were detected by RT-qPCR. The BTG2 effect on TMZ-resistance in GBM was verified. The xenograft tumor nude mouse model was established by injecting LN229r cells and treated with EVs and 100μmol/L TMZ. miR-27a-3p was highly expressed in LN229r cells. IC50 value and proliferation of LN229r cells with silenced miR-27a-3p were decreased and apoptosis was increased, indicating that miR-27a-3p silencing reduced the drug-resistant cell LN229r resistance to TMZ. LN18-derived EVs could be internalized by LN229r cells, and release its encapsulated miR-27a-3p into LN229r cells and increase miR-27a-3p expression. EV treatment increased LN229r cell proliferation and reduced apoptosis, while EVs with silenced miR-27a-3p showed the opposite trend. miR-27a-3p targeted BTG2. BTG2 overexpression reduced LN229r cell resistance to TMZ. In vivo, after EVs treatment, tumor volume and weight, Ki67-positive rate, and miR-27a-3p were increased, while BTG2 expression was decreased. GBM-derived EVs were internalized by GBM cells, released miR-27a-3p into GBM cells, upregulated miR-27a-3p expression, and targeted BTG2, thus promoting TMZ resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call