Abstract

Rare-earth-free Mn-based binary alloy L10-MnAl with bulk perpendicular magnetic anisotropy (PMA) holds promise for high-performance magnetic random access memory (MRAM) devices driven by spin-orbit torque (SOT). However, the lattice-mismatch issue makes it challenging to place conventional spin current sources, such as heavy metals, between L10-MnAl layers and substrates. In this work, we propose a solution by using the B2-CoGa alloy as the spin current source. The lattice-matching enables high-quality epitaxial growth of 2-nm-thick L10-MnAl on B2-CoGa, and the L10-MnAl exhibits a large PMA constant of 1.04 × 106 J/m3. Subsequently, the considerable spin Hall effect in B2-CoGa enables the achievement of SOT-induced deterministic magnetization switching. Moreover, we quantitatively determine the SOT efficiency in the bilayer. Furthermore, we design an L10-MnAl/B2-CoGa/Co2MnGa structure to achieve field-free magnetic switching. Our results provide valuable insights for achieving high-performance SOT-MRAM devices based on L10-MnAl alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.