Abstract

Micro-Electro-Mechanical-System (MEMS) devices associated to Transmission Electron Microscopes (TEM) have demonstrated their high potential for atomic resolution imaging of specimen while applying stress for mechanical testing. This paper introduces a novel actuation principle for the MEMS device in TEM relying on the internal magnetic field of the TEM and current flow through the device. The actuation principle is experimentally demonstrated in TEM and entirely modeled in the case of a silicon beam. The model is validated through static and dynamic experimental studies. The thermal side-effect of current flow is taken into account. The major advantages of the proposed magnetic actuation principle are the bidirectional control of the displacement of the device, the intrinsic linear displacement of the device with applied current and the potential milliNewton (mN) range force generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.