Abstract
Galvanic corrosion of carbon steel welded with type-309 stainless steel in NaCl solution was tentatively evaluated with a newly developed multi-channel electrode technique in which the welded specimen was divided into nine working electrodes (WEs), reconstructed in resin, and connected individually to an imaginary ground level of an electric circuit via relay switches. This allows the WEs to join a galvanic couple and simultaneous measurement of participating current or open circuit potential of each WE. WEs were immersed together in 5.1 × 10 2 mol dm −3 or 2.1 × 10 −4 mol dm −3 NaCl solutions, and spatial distribution of participating currents and open circuit potentials were monitored as a function of immersion time. The WE of the weldment acted as a cathode throughout the immersion period, while the other WEs of base steel became anodes or cathodes depending on their location, immersion time and concentration of the electrolyte solution. The ability of zinc-rich paint to protect the welded specimen as sacrificial anode was also investigated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have