Abstract

In this paper, we investigate the vacuum bosonic current density induced by a carrying-magnetic-flux cosmic string in a (D+1)-de Sitter spacetime considering the presence of two flat boundaries perpendicular to it. In this setup, the Robin boundary conditions are imposed on the scalar charged quantum field on the boundaries. The particular cases of Dirichlet and Neumann boundary conditions are studied separately. Due to the coupling of the quantum scalar field with the classical gauge field, corresponding to a magnetic flux running along the string’s core, a nonzero vacuum expectation value for the current density operator along the azimuthal direction is induced. The two boundaries divide the space in three regions with different properties of the vacuum states. In this way, our main objective is to calculate the induced currents in these three regions. In order to develop this analysis we calculate, for both regions, the positive frequency Wightman functions. Because the vacuum bosonic current in dS space has been investigated before, in this paper we consider only the contributions induced by the boundaries. We show that for each region the azimuthal current densities are odd functions of the magnetic flux along the string. To probe the correctness of our results, we take the particular cases and analyze some asymptotic limits of the parameters of the model. Also some graphs are presented exhibiting the behavior of the current with relevant physical parameter of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.