Abstract
Early-stage diagnosis of neurological disease and effective therapeutics play a significant role in improving the chances of saving lives through suitable and personalized courses of treatment. Biomolecules are potential indicators of any kind of disorder in a biological system, and they are recognized as a critical quantitative parameter in disease diagnosis and therapeutics, collectively known as theragnostics. The effective diagnosis of neurological disorders solely depends on the detection of the imbalance in the concentration of neurological biomarkers such as nucleic acids, proteins, and small metabolites in bodily fluids such as blood serum, plasma, urine, etc. This process of neurological biomarker detection can lead to an effective prognosis with a prediction of the treatment efficiency and recurrence. While review papers on electrochemical, spectral, and electronic biosensors for the detection of a wide variety of biomarkers related to neurological disorders are available in the literature, the prevailing challenges and developments in perovskite-based biosensors for effective theragnostics of neurological disorders have received scant attention. In this Mini-Review, we discuss the topical advancements in design strategies of perovskite-based electrochemical biosensors with detailed insight into the detection of neurological disease or disorder-specific biomarkers and their trace-level detection in biological fluids with high specificity and sensitivity. The tables in this Review give the performance analysis of recently developed perovskite-based electrochemical biosensors for effective theragnostics of neurological disorders. To conclude, the current challenges in biosensing technology for early diagnosis and therapeutics of neurological disorders are discussed along with a forecast of their anticipated developments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.