Abstract

Abstract : A numerical model which we previously developed is extended and used to solve the equations which predict current and heat transport in a series-augmented, solid-armature railgun. The model is two-dimensional and fully time dependent. Specific calculations are carried out to analyze the armature recently designed and developed in the Cannon-Caliber Electromagnetic Launcher (CCEML) Program. The most extensive computations are for a situation in which the projectile is started at rest and accelerated to nearly 2 km/s in a time of 2 ms. Results of the calculations can be used to infer, for example, where melting in the armature is most likely to occur and where the electromagnetic stresses are largest. For comparison, calculations are also presented for a situation in which the projectile is held fixed. These calculations are intended to demonstrate the importance of velocity effects in the design of solid-armature railguns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.