Abstract
The design of recommendation strategies in the adaptive learning systems focuses on utilizing currently available information to provide learners with individual-specific learning instructions. As a critical motivate for human behaviours, curiosity is essentially the drive to explore knowledge and seek information. In a psychologically inspired view, we propose a curiosity-driven recommendation policy within the reinforcement learning framework, allowing for an efficient and enjoyable personalized learning path. Specifically, a curiosity reward from a well-designed predictive model is generated to model one's familiarity with the knowledge space. Given such curiosity rewards, we apply the actor-critic method to approximate the policy directly through neural networks. Numerical analyses with a large continuous knowledge state space and concrete learning scenarios are provided to further demonstrate the efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The British journal of mathematical and statistical psychology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.