Abstract

We cure the perturbative instability of the total-inclusive-photoproduction cross sections of vector S-wave quarkonia observed at high photon-proton-collision energies (sγp\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sqrt{s_{\\gamma p}}$$\\end{document}) in Next-to-Leading Order (NLO) Collinear-Factorisation (CF) computations. This is achieved using High-Energy Factorisation (HEF) in the Doubly-Logarithmic Approximation (DLA), which is a subset of the Leading-Logarithmic Approximation (LLA) of HEF which resums higher-order QCD corrections proportional to αsnlnn-1(s^/M2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha _s^n \\ln ^{n-1} ({\\hat{s}}{/}M^2)$$\\end{document} in the Regge limit s^≫M2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\hat{s}}\\gg M^2$$\\end{document} with M2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$M^2$$\\end{document} being the quarkonium mass and s^\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\hat{s}}$$\\end{document} is the squared partonic-center-of-mass energy. Such a DLA is strictly consistent with the NLO and NNLO DGLAP evolutions of the parton distribution functions. By improving the treatment of the large-s^\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\hat{s}}$$\\end{document} asymptotics of the CF coefficient function, the resummation cures the unphysical results of the NLO CF calculation. The matching is directly performed in s^\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\hat{s}}$$\\end{document} space using the Inverse-Error Weighting matching procedure which avoids any possible double counting. The obtained cross sections are in good agreement with data. In addition, the scale-variation uncertainty of the matched result is significantly reduced compared to the LO results. Our calculations also yield closed-form analytic limits for s^≫M2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\hat{s}}\\gg M^2$$\\end{document} of the NLO partonic CF and numerical limits for contributions to those at NNLO scaling like αs2ln(s^/M2)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha _s^2 \\ln ({\\hat{s}}/M^2)$$\\end{document}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.