Abstract

AbstractThe curing behavior of diglycidyl ether of bisphenol‐A (DGEBA) was investigated by differential scanning calorimetry, using varying molar ratios of imide‐amines and 4,4′‐diaminodiphenyl sulfone (DDS). The imide‐amines were prepared by reacting 1 mol of pyromellitic dianhydride (P) with excess (2.5 mol) of 4,4′‐diaminodiphenyl ether (E), 4,4′‐diaminodiphenyl methane (M), or 4,4′‐diaminodiphenyl sulfone (S) and designated as PE, PM, PS. Structural characterization was done using FTIR, 1H NMR, 13C NMR spectroscopic techniques and elemental analysis. The mixture of imide‐amines and DDS at ratio of 0 : 1, 0.25 : 0.75, 0.5 : 0.5, 0.75 : 0.25, and 1 : 0 were used to investigate the curing behavior of DGEBA. The multiple heating rate method (5, 10, 15, and 20°C/min) was used to study the curing kinetics of epoxy resins. The peak exotherm temperature was found to be dependent on the heating rate, structure of imide‐amine, and also on the ratio of imide‐amine : DDS used. Activation energy was highest in case of epoxy cured using a mixture of DDS : imide‐amine of a ratio of 0.75 : 0.25. Thermal stability of the isothermally cured resins was also evaluated in a nitrogen atmosphere using dynamic thermogravimetry. The char yield was highest in case of resins cured using mixture of DDS : PS (0.25 : 0.75; EPS‐3), DDS : PM (0.25 : 0.75; EPM‐3), and DDS : PE (0.75 : 0.25; EPE‐1). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3502–3510, 2006

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.