Abstract

AbstractThe curing behavior of diglycidyl ether of bisphenol A (DGEBA) was investigated by differential scanning calorimetry with mixtures of silicon‐containing amide–amines and diaminodiphenyl sulfone (DDS). Silicon‐containing amide–amines were prepared by the reaction of 2.5 mol of 4,4′‐diaminodiphenyl ether (E), 4,4′‐diaminodiphenyl methane (M), 3,3′‐diaminodiphenyl sulfone (mS), 4,4′‐diaminodiphenyl sulfone (pS), bis(3‐aminophenyl) methyl phosphine oxide (B), or tris(3‐aminophenyl) phosphine oxide (T) with 1 mol of bis(4‐chlorobenzoyl) dimethyl silane. Mixtures of the amide–amines and DDS at ratios of 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0 were used to investigate the curing behavior of DGEBA. A single exotherm was observed on curing with a mixture of amide–amine and DDS. This clearly shows that the mixture participated in the cocuring reaction. The peak exotherm temperature depended on the structure and the molar ratio of amide–amines. With all of the amide–amines and DDS, a significant decrease in the kick‐off temperature of the curing exotherm was observed on the incorporation of a 0.25 molar fraction of amide–amines. Thus, with the mixture, the curing temperatures were reduced and were lowest for ether‐containing amide‐amines and highest for methylene‐containing amide–amines. The char yield was almost similar in the samples cured with amide–amines (E, pS, or mS) or DDS. The char yield was higher than for either of the constituents when a mixture was used. A synergistic behavior was observed when a mixture of E, M, mS, or pS and DDS was used, whereas mixture of B or T and DDS showed antigonism in the char yield. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1739–1747, 2003

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call