Abstract

BackgroundZedoary turmeric oil extracted from the roots of curcuma (Curcuma aeruginosa Roxb.) is used for the treatment of myocarditis in China. EMCV infection causes abortion in pregnant sows and myocarditis in piglets. Our previous studies demonstrated that curcumol significantly increased the expression of IFN-β in EMCV infected HEK-293T cells. The present results showed that curcumol inhibits EMCV replication by interfering the host cell cholesterol homeostasis and reducing ROs production through activation of the JAK/STAT signaling pathway.MethodThis study was designed to explore whether curcumol can inhibit the replication of encephalomyocarditis viruses (EMCV) in cell culture. The expression level of JAK1, IRF9, STAT2, P-STAT2, CH25H, PI4KA and OSBP in EMCV-infected HEK-293T cells treated with curcumol, ribavirin or hydroxypropyl-β-CD (HPCD) were determined by Western blotting (WB). The cholesterol level in EMCV infected HEK-293T cells treated with curcumol and HPCD were detected using Amplex™ Red Cholesterol Assay Kit. The antiviral effects of curcumol and HPCD on EMCV were also quantitatively detected by real-time fluorescence quantitative PCR (q-PCR). The amount and morphology of ROs were observed by transmission electron microscopy (TEM).ResultsThe results demonstrated that curcumol significantly (P < 0.05) increased the expression of JAK1, IRF9, P-STAT2 and CH25H proteins, while that of STAT2, PI4KA and OSBP were remained unchanged. Compared with virus group (0.134 μg.μg-1 proteins), the total cholesterol level was significantly (P < 0.05) reduced by curcumol (0.108 μg.μg-1 proteins) and HPCD (0.089 μg.μg-1 proteins). Compared with virus group (88237 copies), curcumol (41802 copies) and HPCD (53 copies) significantly (P < 0.05) reduced EMCV load. Curcumol significantly reduced the production of ROs in EMCV-infected HEK-293T cells and activated CH25H through the JAK/STAT signaling pathway.ConclusionCurcumol inhibited EMCV replication by affecting the cholesterol homeostasis and the production of ROs in HEK-293T cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call