Abstract
Tobacco smoke is a major risk factor for lung cancer. Epithelial‑mesenchymal transition (EMT) is decisive in cancer invasion and metastasis, and therefore promotes cancer progression. Mitogen‑activated protein kinase (MAPK) pathways are implicated in various aspects of cancer development and progression, including the EMT process. The chemopreventive effect of curcumin on carcinogenesis has been reported invivo and invitro. The present study investigated tobacco smoke‑induced alterations in the MAPK/activator protein‑1 (AP‑1) pathways, and pulmonary EMT changes in the lungs of mice, and further observed the chemopreventive effect of curcumin. The protein expression levels analyzed by western blot analysis demonstrated that 12weeks of tobacco smoke exposure activated extracellular‑signal‑regulated kinase (ERK) 1/2, c‑Jun N‑terminal kinase (JNK) and p38 MAPK pathways, in addition to AP‑1, in the lungs of mice, while reducing the activation of ERK5/MAPK pathways. The results also indicated that the mRNA and protein levels of the epithelial markers E‑cadherin and zona occludens‑1 were reduced following tobacco smoke exposure. Conversely, the expression levels of mRNA and protein for the mesenchymal markers vimentin and N‑cadherin were increased. Curcumin treatment inhibited tobacco smoke‑induced MAPK/AP‑1 activation, including ERK1/2, JNK and p38 MAPK pathways, and AP‑1 proteins, and reversed EMT alterations in lung tissue. The results of the present study provide new insights into the molecular mechanisms of tobacco smoke‑associated lung cancer and may open up new avenues in the search for potential therapeutic targets in lung tumorigenesis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have