Abstract

Curcumin, a polyphenol derived from Curcuma longa, has some adverse effects on heart; however, its toxic effects on cardiac cells are poorly understood. To evaluate the toxicity of curcumin on H9c2 rat cardiomyoblasts. To this, H9c2 cells were exposed to different concentrations of curcumin and proliferation, viability, cell cycle, oxidative stress, mitochondrial membrane potential (ΔΨm), death and autophagy were evaluated. Curcumin caused concentration-dependent inhibition of H9c2 cells proliferation and viability. A higher sub-G1 population was observed in cells treated with curcumin, which was related with phosphatidylserine translocation and increase of activated caspase-9, indicating apoptotic death. Curcumin induced oxidative stress and decreased ΔΨm causing mitochondrial dysfunction. Additionally, it promoted autophagy, revealed by higher LC3B and beclin-1 protein expression and mitophagy. Curcumin exhibited toxic effects in cardiac cells and further studies are required to validate its therapeutic potential and use as anti-inflammatory and anti-oxidant agent in the cardiovascular system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.