Abstract

BackgroundCurcumin is a biomolecule that can be extracted from the Curcuma longa that has been shown to have the potential to aid skin wound healing. It has been studied for its anti-inflammatory and antioxidant properties, which may help to reduce swelling and promote tissue repair. However, curcumin has low solubility in water, which can limit its absorption and bioavailability. Encapsulating it in lipid nanoparticles may help to increase its absorption, leading to improved bioavailability.MethodsCurcumin-loaded nanostructure lipid nanocarriers (CURC-NLCs) were prepared and characterized. Also, the phenolic, flavonoid contents, antioxidant and antimicrobial efficacy against gram-positive and gram-negative bacteria were investigated. Furthermore, in vivo rabbit animal model was used to test its regenerative capacity and wound-healing efficiency.ResultsThe CURC-NLCs significantly increased the content of phenolic and flavonoid compounds compared to curcumin, resulting in a dramatic increase in antioxidant activity. CURC-NLCs also showed a potent inhibitory effect on Gram-positive, Gram-negative, and fungi, two times higher than curcumin. CURC-NLCs showed a higher potential to fasten the wound healing of full-thickness skin injuries as it resulted in 1.15- and 1.9-fold higher wound closure at the first week of injury compared to curcumin and control, respectively (p < 0.0001).ConclusionThese results suggest that CURC-NLCs have an excellent potential to promote skin regeneration, which could be attributed to its antioxidant and broad-spectrum antimicrobial effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call