Abstract

In preclinical studies, tumor cells genetically engineered to secrete cytokines, hereafter referred to as tumor cell vaccines, can often generate systemic antitumor immunity. This study investigated the therapeutic effects of live or irradiated tumor cell vaccines that secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) on established orthotopic liver tumors. Experimental results indicated that two doses (3 x 10(7) cells per dose) of irradiated tumor cell vaccines were therapeutically ineffective, whereas one dose (3 x 10(6) cells) of live tumor cell vaccines caused complete tumor regression. In vivo depletion of CD8+ T cells, but not natural killer cells, restored tumor formation in the live vaccine-treated animals. Additionally, the treatment of cells with live vaccine induced markedly higher levels of cytotoxic T lymphocyte activity than the irradiated vaccines in the draining lymph nodes. The higher levels of cytokine and antigen loads could partly explain the superior antitumor activity of live tumor cell vaccines, but other unidentified mechanisms could also play a role in the early T cell activation in the lymph nodes. A protocol using multiple and higher dosages of irradiated tumor cell vaccines also caused significant regression of liver tumors. These results suggest that the GM-CSF-secreting tumor cell vaccines are highly promising for orthotopic liver tumors if higher levels of immune responses are elicited during early tumor development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call