Abstract
Cuproptosis is a newly identified form of copper-dependent cell death that differs from other known pathways. This discovery provides a new way to explore copper-based nanomaterial applications in cancer therapy. This study used a layer-by-layer self-assembling method to load Cu2-xS nanoparticle (NP) cores with the siRNA of the PD-L1 immune escape-related gene and wrap a silk fibroin (SF) shell to form a multifunctional copper-based SF nanoplatform, denoted as CuS-PEI-siRNA-SFNs. CuS-PEI-siRNA-SFNs induced cuproptosis and exerted an antitumor effect via multiple mechanisms, including photothermal therapy (PTT), chemodynamic therapy (CDT), and immune activation. The presence of significant dihydrolipoamide S-acetyltransferase (DLAT) oligomers in 4T1 cells treated with CuS-PEI-siRNA-SFNs indicated the triggering of cuproptosis. Furthermore, in vivo experimental results showed that CuS-PEI-siRNA-SFNs efficiently accumulated in the tumor tissues of 4T1 tumor-bearing mice inhibited primary tumor and lung metastasis, and displayed excellent biosafety and antitumor activity. This study demonstrated that the synergistic effect of cuproptosis, PTT, CDT, and immune activation showed promise for treating metastatic breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.