Abstract

To investigate whether metal oxide nanoparticles exhibit toxicity or positive effects on medicinal plants, CuO, ZnO, and γ-Fe2O3 nanoparticles (NPs), at concentrations of 100 and 700 mg kg−1, were introduced into the cultivation of Salvia miltiorrhiza (Bge.). Metal elemental contents, chemical constituents, biomass and the structure of the rhizosphere microbial community was used to estimate this effect. The results indicated CuO NPs increased the Cu content and ZnO NPs increased the Zn content significantly as exposure increased, γ-Fe2O3 NPs had no significant effect on Fe content in S. miltiorrhiza roots, while 100 mg kg−1 ZnO and CuO NPs significantly decreased the Fe content in roots. Additionally, ZnO and γ-Fe2O3 NPs increased the underground biomass, and diameter of S. miltiorrhiza roots. However, these three metal oxide nanoparticles had no significant effect on total tanshinones, while the 700 mg kg−1 γ-Fe2O3 NPs treatment increased salvianolic acid B content by 36.46%. High-throughput sequencing indicated at 700 mg kg−1 ZnO NPs, the relative abundance of Humicola (Zn superoxide dismutase producer), was notably increased by 97.46%, and that of Arenimonas, Thiobacillus and Methylobacillus (taxa related to heavy metal tolerance) was significantly increased by 297.14%, 220.26% and 107.00%. The 700 mg kg−1 CuO NPs exposure caused a significant increase in the relative abundances of Sphingomonas (a copper-resistant and N2-fixing genus) and Flavisolibacter (stripe rust biocontrol bacteria) by 127.32% and 118.33%. To our best knowledge, this is the first study to examine the potential impact of NPs on the growth and rhizosphere microorganisms of S. miltiorrhiza.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call