Abstract
CuO nanoparticle decorated porous ZnO nanorods were synthesized via a two-stage solution process. First, porous ZnO nanorods were fabricated by a low-temperature hydrothermal method. Afterward, the porous ZnO nanorods were used as supports to load CuO nanoparticles by a non-aqueous solution method. The morphology and structure of the prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). To demonstrate the practical application of the synthesized heterostructured porous CuO/ZnO nanorod hybrid, the sensing properties for H2S at low operating temperatures were investigated. The high sensitivity, reversible response and good selectivity indicated its potential application as a chemical sensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.