Abstract

The passage of a magnetosonic (MS) soliton in a cold plasma leads to the displacement of charged particles in the direction of a compressive pulse and in the opposite direction of a rarefaction pulse. In the overdense plasma limit, the displacement induced by a weakly nonlinear MS soliton is derived analytically. This result is then used to derive an asymptotic expansion for the displacement resulting from the bouncing motion of a MS soliton reflected back and forth in a vacuum-bounded cold plasma slab. Particles' displacement after the pulse energy has been lost to the vacuum region is shown to scale as the ratio of light speed to Alfvén velocity. Results for the displacement after a few MS soliton reflections are corroborated by particle-in-cell simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.