Abstract
Pseudomonas aeruginosa poses a serious threat in healthcare settings. This bacterium can develop resistance to many antibiotics, rendering even last-resort treatments ineffective. Additionally, it forms protective biofilms that shield it from the immune system, making infection treatment challenging. This study investigated the susceptibility of five clinically isolated strains of the test bacteria to a combination of ciprofloxacin and cuminaldehyde. Cuminaldehyde (a natural phytochemical) and ciprofloxacin (an antibiotic) were separately found to show antimicrobial effect against test organism. However, the combination of selected compounds showed an additive effect in their microbial growth inhibitory activity. The mentioned compounds at their sub-MIC doses subjected to test whether they could show any extent of biofilm inhibition or disintegration property against the clinical strains of P. aeruginosa. The chosen concentrations of the compounds demonstrated significant antibiofilm activity against all the tested clinical strains. Additionally, it was observed that the compounds not only accumulated reactive oxygen species (ROS) but also enhanced the cell membrane permeability of the clinical strains. These findings suggest that the combination of ciprofloxacin and cuminaldehyde could explore new directions in fighting P. aeruginosa-linked infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.