Abstract
A thin biodegradable hybrid mesh of synthetic poly(DL-lactic-co-glycolic acid) (PLGA) and naturally derived collagen was used for three-dimensional culture of human skin fibroblasts. The hybrid mesh was constructed by forming web-like collagen microsponges in the openings of a PLGA knitted mesh. The behaviors of the fibroblasts on the hybrid mesh and PLGA knitted mesh were compared. The efficiency of cell seeding was much higher and the cells grew more quickly in the hybrid mesh than in the PLGA mesh. The fibroblasts in the PLGA mesh grew from the peripheral PLGA fibers toward the centers of the openings, while those in the hybrid mesh also grew from the collagen microsponges in the openings of the mesh resulting in a more homogenous growth. The proliferated cells and secreted extracellular matrices were more uniformly distributed in the hybrid mesh than in the PLGA mesh. Histological staining of in vitro cultured fibroblast/mesh implants indicated that the fibroblasts were distributed throughout the hybrid mesh and formed a uniform layer of dermal tissue having almost the same thickness as that of the hybrid mesh. However, the tissue formed in the PLGA mesh was thick adjacent to the PLGA fibers and thin in the center of the openings. Fibroblasts cultured in the hybrid mesh were implanted in the back of nude mouse. Dermal tissues were formed after 2 weeks and became epithelialized after 4 weeks. The results indicate that the web-like collagen microsponges formed in the openings of the PLGA knitted mesh increased the efficiency of cell seeding, improved cell distribution, and therefore facilitated rapid formation of dermal tissue having a uniform thickness. PLGA–collagen hybrid mesh may be useful for skin tissue engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.