Abstract
Granules which could efficiently mineralize azo dyes were cultivated through immobilization of aerobic degradation strains in a core composed of anaerobic decolorization cultures. The core was obtained in a up-flow anaerobic sludge blanket (UASB) reactor incubated with anaerobic decolorization bacteria. Aerobic degradation strains were then grown on the surface of the anaerobic core in a sequencing batch reactor (SBR). Three of the granules' surface layers demonstrated the occurrence of immobilization. The granulation process was monitored with 16S rDNA high throughput sequencing. Anaerobic decolorization cultures belonging to the genera of unclassified, Levilinea, and Petrimonas and the aerobic degradation genera of Thauera, unclassified, Thermomonas, and Ottowia were successfully fixed in the granules. The obtained granules were capable of decolorizing azo dyes under anaerobic situation, and the generated aromatic amines were then completely mineralized in aerated environment. Comparative studies on the relationship between removed contaminates and typical components concentrations in low to high strength azo dye wastewater showed that the granules have great potentials in treating wastewater with different complexity. The removal efficiency of COD and TOC was not restricted by loading concentrations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have