Abstract

Rapid and inexpensive sorting of bacterial isolates may be achieved using Fourier transform infrared spectroscopy (FT-IR), a method that has hitherto been applied to identification and classification. The comprehensive characterization of environmental samples requires the isolation of large numbers of isolates using different growth media and growth conditions. In such cases, sorting the isolates is critical before isolates are subjected to more detailed studies. Using FT-IR, isolates are grown under standardized conditions, and 100 strains can be tested within less than 8 h. Chemotaxonomic and molecular characterization of members of clusters emerging from FT-IR analysis either at a level of spectral distance values below 20-30 (analysis of region 600-800 cm(-1), average linkage algorithm) or at spectral heterogeneity values below 75 (regions 1,200-900, 3,000-2,798 and 901-698, scaling to first region, Ward's algorithm) reveals great similarities in fatty acids and 16S rDNA sequences. As judged from riboprinting analyses and fatty acid analyses, FT-IR analysis is able to unravel intraspecific subclustering. The example used in this study of 100 isolates from a mat system, Lake Fryxell, Dry Valleys, Antarctica, selected from a larger number of isolates, picked mainly on the basis of colony pigmentation and form, reveals the utility of the method for identifying the number of putative species quickly. The method described is able to select strains rapidly that represent clusters at the specific and intraspecific level for subsequent characterization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call