Abstract

The separation and recovery of carbon monoxide (CO) from blast furnace gas (BFG) mixtures is an important issue, as CO is a key substance in the petrochemical industry. We developed a series of Cu(I)-impregnated MIL-100(Fe) (Cu(x)@MIL-100(Fe)) with varied Cu loadings through a facile Cu(I)-loading method that does not require high-temperature thermal treatment. Among these, we found that Cu(0.5)@MIL-100(Fe) is the optimal material, with a high CO/CO2 selectivity (15.4) and large working capacity (0.38mmol/g). This material showed very high CO/CO2, CO/N2, and CO/H2 selectivities (33.3, 106.4, and 98.4, respectively) for gas mixtures with a typical BFG composition, excellent CO separation from a simulated BFG mixture (CO/CO2/N2/H2=22:20:55:3vol.%) under dynamic flow conditions, and reasonable air stability. These results show that Cu(0.5)@MIL-100(Fe) is an efficient adsorbent for the recovery of CO from BFG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.