Abstract
Carrier-selective contacts have emerged as a promising architecture for solar cell fabrication. In this report, the first hole-selective III-V semiconductor solar cell is demonstrated using copper iodide (CuI) on i-GaAs. Surface passivation quality of GaAs is found to be essential for open-circuit voltage (VOC), with good correlation between photoluminescence properties of the GaAs layer and the VOC. Passivation with <10 nm thick In0.49Ga0.51P layers is shown to provide an over 300 mV improvement. Oxygen-rich CuI is formed by natural oxidation in the atmosphere, and the increased oxygen content of ∼10% is validated by energy-dispersive X-ray measurements. The oxygen incorporation is shown to improve hole selectivity and thus solar conversion efficiency. Ultraviolet photoelectron spectroscopy indicates a high work function of ∼6 eV for the oxygen-rich CuI. With optimized GaAs surface passivation and oxygen-rich CuI, a VOC of nearly 1 V and a solar conversion efficiency of 13.4% are achieved. The solar cell structure includes only undoped GaAs, a surface passivation layer, and non-epitaxial CuI contact and is therefore very promising to various low-cost crystal growth methods. The results have a significant impact on III-V solar cell fabrication and costs as it (i) enables fully carrier-selective architectures, (ii) reduces cell fabrication complexity, and (iii) is suitable for layers grown by low-cost crystal growth techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.