Abstract

The major challenges in deep learning approaches to cuffless blood pressure estimation is selecting the most appropriate representative of the blood pulse waveform and extraction of relevant features for data collection. This paper performs an analysis of a novel dataset consisting of 71 features from the carotid dual-diameter waveforms and 4 blood pressure parameters. In particular, the analysis uses gradient boosting and graph-theoretic algorithms to determine (1) features with high predictive power and (2) potential to be pruned. Identifying such features and understanding their physiological significance is important for building blood pressure estimation models using machine learning that is robust across diverse clinical environments and patient sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.