Abstract

Existing formats for Sparse Matrix–Vector Multiplication (SpMV) on the GPU are outperforming their corresponding implementations on multi-core CPUs. In this paper, we present a new format called Sliced COO (SCOO) and an efficient CUDA implementation to perform SpMV on the GPU using atomic operations. We compare SCOO performance to existing formats of the NVIDIA Cusp library using large sparse matrices. Our results for single-precision floating-point matrices show that SCOO outperforms the COO and CSR format for all tested matrices and the HYB format for all tested unstructured matrices on a single GPU. Furthermore, our dual-GPU implementation achieves an efficiency of 94% on average. Due to the lower performance of existing CUDA-enabled GPUs for atomic operations on double-precision floating-point numbers the SCOO implementation for double-precision does not consistently outperform the other formats for every unstructured matrix. Overall, the average speedup of SCOO for the tested benchmark dataset is 3.33 (1.56) compared to CSR, 5.25 (2.42) compared to COO, 2.39 (1.37) compared to HYB for single (double) precision on a Tesla C2075. Furthermore, comparison to a Sandy-Bridge CPU shows that SCOO on a Fermi GPU outperforms the multi-threaded CSR implementation of the Intel MKL Library on an i7-2700 K by a factor between 5.5 (2.3) and 18 (12.7) for single (double) precision. Source code is available at https://github.com/danghvu/cudaSpmv.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.